Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
EMBO Mol Med ; 16(3): 616-640, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383802

RESUMO

Haplo-insufficiency of the gene encoding the myelin protein PMP22 leads to focal myelin overgrowth in the peripheral nervous system and hereditary neuropathy with liability to pressure palsies (HNPP). Conversely, duplication of PMP22 causes Charcot-Marie-Tooth disease type 1A (CMT1A), characterized by hypomyelination of medium to large caliber axons. The molecular mechanisms of abnormal myelin growth regulation by PMP22 have remained obscure. Here, we show in rodent models of HNPP and CMT1A that the PI3K/Akt/mTOR-pathway inhibiting phosphatase PTEN is correlated in abundance with PMP22 in peripheral nerves, without evidence for direct protein interactions. Indeed, treating DRG neuron/Schwann cell co-cultures from HNPP mice with PI3K/Akt/mTOR pathway inhibitors reduced focal hypermyelination. When we treated HNPP mice in vivo with the mTOR inhibitor Rapamycin, motor functions were improved, compound muscle amplitudes were increased and pathological tomacula in sciatic nerves were reduced. In contrast, we found Schwann cell dedifferentiation in CMT1A uncoupled from PI3K/Akt/mTOR, leaving partial PTEN ablation insufficient for disease amelioration. For HNPP, the development of PI3K/Akt/mTOR pathway inhibitors may be considered as the first treatment option for pressure palsies.


Assuntos
Artrogripose , Doença de Charcot-Marie-Tooth , Neuropatia Hereditária Motora e Sensorial , Fosfatidilinositol 3-Quinases , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt , Roedores/metabolismo , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo , Serina-Treonina Quinases TOR
2.
Cell Metab ; 35(12): 2136-2152.e9, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37989315

RESUMO

The peripheral nervous system harbors a remarkable potential to regenerate after acute nerve trauma. Full functional recovery, however, is rare and critically depends on peripheral nerve Schwann cells that orchestrate breakdown and resynthesis of myelin and, at the same time, support axonal regrowth. How Schwann cells meet the high metabolic demand required for nerve repair remains poorly understood. We here report that nerve injury induces adipocyte to glial signaling and identify the adipokine leptin as an upstream regulator of glial metabolic adaptation in regeneration. Signal integration by leptin receptors in Schwann cells ensures efficient peripheral nerve repair by adjusting injury-specific catabolic processes in regenerating nerves, including myelin autophagy and mitochondrial respiration. Our findings propose a model according to which acute nerve injury triggers a therapeutically targetable intercellular crosstalk that modulates glial metabolism to provide sufficient energy for successful nerve repair.


Assuntos
Bainha de Mielina , Nervos Periféricos , Bainha de Mielina/metabolismo , Neuroglia , Células de Schwann/metabolismo , Regeneração Nervosa/fisiologia
3.
Nat Neurosci ; 26(7): 1218-1228, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37386131

RESUMO

Axonal degeneration determines the clinical outcome of multiple sclerosis and is thought to result from exposure of denuded axons to immune-mediated damage. Therefore, myelin is widely considered to be a protective structure for axons in multiple sclerosis. Myelinated axons also depend on oligodendrocytes, which provide metabolic and structural support to the axonal compartment. Given that axonal pathology in multiple sclerosis is already visible at early disease stages, before overt demyelination, we reasoned that autoimmune inflammation may disrupt oligodendroglial support mechanisms and hence primarily affect axons insulated by myelin. Here, we studied axonal pathology as a function of myelination in human multiple sclerosis and mouse models of autoimmune encephalomyelitis with genetically altered myelination. We demonstrate that myelin ensheathment itself becomes detrimental for axonal survival and increases the risk of axons degenerating in an autoimmune environment. This challenges the view of myelin as a solely protective structure and suggests that axonal dependence on oligodendroglial support can become fatal when myelin is under inflammatory attack.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Humanos , Bainha de Mielina/metabolismo , Axônios/metabolismo , Esclerose Múltipla/patologia , Encefalomielite Autoimune Experimental/patologia , Fatores de Risco
4.
Cytoskeleton (Hoboken) ; 80(7-8): 290-302, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36378242

RESUMO

The formation of axon-enwrapping myelin sheaths by oligodendrocytes in the central nervous system involves the assembly of a scaffolding septin filament comprised of the subunits SEPTIN2, SEPTIN4, SEPTIN7 and SEPTIN8. Conversely, in the peripheral nervous system (PNS), myelin is synthesized by a different cell type termed Schwann cells, and it remained unknown if septins also assemble as a multimer in PNS myelin. According to prior proteome analysis, PNS myelin comprises the subunits SEPTIN2, SEPTIN7, SEPTIN8, SEPTIN9, and SEPTIN11, which localize to the paranodal and abaxonal myelin subcompartments. Here, we use the Cre/loxP-system to delete the Septin9-gene specifically in Schwann cells, causing a markedly reduced abundance of SEPTIN9 in sciatic nerves, implying that Schwann cells are the main cell type expressing SEPTIN9 in the nerve. However, Septin9-deficiency in Schwann cells did not affect the abundance or localization of other septin subunits. In contrast, when deleting the Septin2-gene in Schwann cells the abundance of all relevant septin subunits was markedly reduced, including SEPTIN9. Notably, we did not find evidence that deleting Septin2 or Septin9 in Schwann cells impairs myelin biogenesis, nerve conduction velocity or motor/sensory capabilities, at least at the assessed timepoints. Our data thus show that SEPTIN2 but not SEPTIN9 is required for the formation or stabilization of a septin multimer in PNS myelin in vivo; however, its functional relevance remains to be established.

5.
Neurobiol Dis ; 176: 105952, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36493976

RESUMO

The glial cell of the peripheral nervous system (PNS), the Schwann cell (SC), counts among the most multifaceted cells of the body. During development, SCs secure neuronal survival and participate in axonal path finding. Simultaneously, they orchestrate the architectural set up of the developing nerves, including the blood vessels and the endo-, peri- and epineurial layers. Perinatally, in rodents, SCs radially sort and subsequently myelinate individual axons larger than 1 µm in diameter, while small calibre axons become organised in non-myelinating Remak bundles. SCs have a vital role in maintaining axonal health throughout life and several specialized SC types perform essential functions at specific locations, such as terminal SC at the neuromuscular junction (NMJ) or SC within cutaneous sensory end organs. In addition, neural crest derived satellite glia maintain a tight communication with the soma of sensory, sympathetic, and parasympathetic neurons and neural crest derivatives are furthermore an indispensable part of the enteric nervous system. The remarkable plasticity of SCs becomes evident in the context of a nerve injury, where SC transdifferentiate into intriguing repair cells, which orchestrate a regenerative response that promotes nerve repair. Indeed, the multiple adaptations of SCs are captivating, but remain often ill-resolved on the molecular level. Here, we summarize and discuss the knowns and unknowns of the vast array of functions that this single cell type can cover in peripheral nervous system development, maintenance, and repair.


Assuntos
Traumatismos dos Nervos Periféricos , Células de Schwann , Humanos , Células de Schwann/metabolismo , Nervos Periféricos/metabolismo , Axônios/metabolismo , Neurônios/metabolismo , Sistema Nervoso Periférico/metabolismo , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/metabolismo
6.
Glia ; 70(6): 1100-1116, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35188681

RESUMO

We have previously shown that targeting endoneurial macrophages with the orally applied CSF-1 receptor specific kinase (c-FMS) inhibitor PLX5622 from the age of 3 months onwards led to a substantial alleviation of the neuropathy in mouse models of Charcot-Marie-Tooth (CMT) 1X and 1B disease, which are genetically-mediated nerve disorders not treatable in humans. The same approach failed in a model of CMT1A (PMP22-overexpressing mice, line C61), representing the most frequent form of CMT. This was unexpected since previous studies identified macrophages contributing to disease severity in the same CMT1A model. Here we re-approached the possibility of alleviating the neuropathy in a model of CMT1A by targeting macrophages at earlier time points. As a proof-of-principle experiment, we genetically inactivated colony-stimulating factor-1 (CSF-1) in CMT1A mice, which resulted in lower endoneurial macrophage numbers and alleviated the neuropathy. Based on these observations, we pharmacologically ablated macrophages in newborn CMT1A mice by feeding their lactating mothers with chow containing PLX5622, followed by treatment of the respective progenies after weaning until the age of 6 months. We found that peripheral neuropathy was substantially alleviated after early postnatal treatment, leading to preserved motor function in CMT1A mice. Moreover, macrophage depletion affected the altered Schwann cell differentiation phenotype. These findings underscore the targetable role of macrophage-mediated inflammation in peripheral nerves of inherited neuropathies, but also emphasize the need for an early treatment start confined to a narrow therapeutic time window in CMT1A models and potentially in respective patients.


Assuntos
Doença de Charcot-Marie-Tooth , Lactação , Animais , Diferenciação Celular , Doença de Charcot-Marie-Tooth/genética , Feminino , Humanos , Macrófagos/metabolismo , Camundongos , Nervos Periféricos/metabolismo
7.
Schizophr Bull ; 47(5): 1409-1420, 2021 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-33871014

RESUMO

The neuregulin 1 (NRG1) ErbB4 module is at the core of an "at risk" signaling pathway in schizophrenia. Several human studies suggest hyperstimulation of NRG1-ErbB4 signaling as a plausible pathomechanism; however, little is known about the significance of stage-, brain area-, or neural cell type-specific NRG1-ErbB4 hyperactivity for disease-relevant brain endophenotypes. To address these spatiotemporal aspects, we generated transgenic mice for Cre recombinase-mediated overexpression of cystein-rich domain (CRD) NRG1, the most prominent NRG1 isoform in the brain. A comparison of "brain-wide" vs cell type-specific CRD-NRG1 overexpressing mice revealed that pathogenic CRD-NRG1 signals for ventricular enlargement and neuroinflammation originate outside glutamatergic neurons and suggests a subcortical function of CRD-NRG1 in the control of body weight. Embryonic onset of CRD-NRG1 in glutamatergic cortical networks resulted in reduced inhibitory neurotransmission and locomotor hyperactivity. Our findings identify ventricular enlargement and locomotor hyperactivity, 2 main endophenotypes of schizophrenia, as specific consequences of spatiotemporally distinct expression profiles of hyperactivated CRD-NRG1 signaling.


Assuntos
Encéfalo , Endofenótipos , Ácido Glutâmico/metabolismo , Rede Nervosa , Neuregulina-1/metabolismo , Agitação Psicomotora , Receptor ErbB-4/metabolismo , Esquizofrenia , Animais , Comportamento Animal/fisiologia , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Embrião de Mamíferos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rede Nervosa/metabolismo , Rede Nervosa/fisiopatologia , Agitação Psicomotora/metabolismo , Agitação Psicomotora/fisiopatologia , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatologia , Transdução de Sinais/fisiologia
8.
Nat Commun ; 12(1): 2356, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33883545

RESUMO

Charcot-Marie-Tooth disease 1 A (CMT1A) results from a duplication of the PMP22 gene in Schwann cells and a deficit of myelination in peripheral nerves. Patients with CMT1A have reduced nerve conduction velocity, muscle wasting, hand and foot deformations and foot drop walking. Here, we evaluate the safety and efficacy of recombinant adeno-associated viral vector serotype 9 (AAV2/9) expressing GFP and shRNAs targeting Pmp22 mRNA in animal models of Charcot-Marie-Tooth disease 1 A. Intra-nerve delivery of AAV2/9 in the sciatic nerve allowed widespread transgene expression in resident myelinating Schwann cells in mice, rats and non-human primates. A bilateral treatment restore expression levels of PMP22 comparable to wild-type conditions, resulting in increased myelination and prevention of motor and sensory impairments over a twelve-months period in a rat model of CMT1A. We observed limited off-target transduction and immune response using the intra-nerve delivery route. A combination of previously characterized human skin biomarkers is able to discriminate between treated and untreated animals, indicating their potential use as part of outcome measures.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/terapia , Proteínas da Mielina/antagonistas & inibidores , Proteínas da Mielina/genética , Animais , Doença de Charcot-Marie-Tooth/patologia , Dependovirus/genética , Modelos Animais de Doenças , Feminino , Inativação Gênica , Terapia Genética/métodos , Vetores Genéticos , Humanos , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno/genética , Ratos , Ratos Mutantes , Células de Schwann/metabolismo , Células de Schwann/patologia , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia
9.
Nat Commun ; 11(1): 4514, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908139

RESUMO

The velocity of nerve conduction is moderately enhanced by larger axonal diameters and potently sped up by myelination of axons. Myelination thus allows rapid impulse propagation with reduced axonal diameters; however, no myelin-dependent mechanism has been reported that restricts radial growth of axons. By label-free proteomics, STED-microscopy and cryo-immuno electron-microscopy we here identify CMTM6 (chemokine-like factor-like MARVEL-transmembrane domain-containing family member-6) as a myelin protein specifically localized to the Schwann cell membrane exposed to the axon. We find that disruption of Cmtm6-expression in Schwann cells causes a substantial increase of axonal diameters but does not impair myelin biogenesis, radial sorting or integrity of axons. Increased axonal diameters correlate with accelerated sensory nerve conduction and sensory responses and perturbed motor performance. These data show that Schwann cells utilize CMTM6 to restrict the radial growth of axons, which optimizes nerve function.


Assuntos
Axônios/metabolismo , Proteínas com Domínio MARVEL/metabolismo , Proteínas da Mielina/metabolismo , Nervos Periféricos/citologia , Células de Schwann/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Axônios/ultraestrutura , Microscopia Crioeletrônica , Masculino , Camundongos , Camundongos Knockout , Bainha de Mielina/metabolismo , Bainha de Mielina/ultraestrutura , Condução Nervosa , Nervos Periféricos/metabolismo , Nervos Periféricos/ultraestrutura , Proteômica , Células de Schwann/citologia , Células de Schwann/ultraestrutura , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/ultraestrutura
10.
Proc Natl Acad Sci U S A ; 117(17): 9466-9476, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32295886

RESUMO

Peripheral nerves contain axons and their enwrapping glia cells named Schwann cells (SCs) that are either myelinating (mySCs) or nonmyelinating (nmSCs). Our understanding of other cells in the peripheral nervous system (PNS) remains limited. Here, we provide an unbiased single cell transcriptomic characterization of the nondiseased rodent PNS. We identified and independently confirmed markers of previously underappreciated nmSCs and nerve-associated fibroblasts. We also found and characterized two distinct populations of nerve-resident homeostatic myeloid cells that transcriptionally differed from central nervous system microglia. In a model of chronic autoimmune neuritis, homeostatic myeloid cells were outnumbered by infiltrating lymphocytes which modulated the local cell-cell interactome and induced a specific transcriptional response in glia cells. This response was partially shared between the peripheral and central nervous system glia, indicating common immunological features across different parts of the nervous system. Our study thus identifies subtypes and cell-type markers of PNS cells and a partially conserved autoimmunity module induced in glia cells.


Assuntos
Neurônios/fisiologia , Nervos Periféricos/citologia , Animais , Doenças Autoimunes/metabolismo , Biomarcadores , Comunicação Celular , Linhagem da Célula , Regulação da Expressão Gênica/fisiologia , Homeostase , Humanos , Leucócitos/fisiologia , Macrófagos/fisiologia , Camundongos , Ratos
11.
Elife ; 92020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32130108

RESUMO

Proteome and transcriptome analyses aim at comprehending the molecular profiles of the brain, its cell-types and subcellular compartments including myelin. Despite the relevance of the peripheral nervous system for normal sensory and motor capabilities, analogous approaches to peripheral nerves and peripheral myelin have fallen behind evolving technical standards. Here we assess the peripheral myelin proteome by gel-free, label-free mass-spectrometry for deep quantitative coverage. Integration with RNA-Sequencing-based developmental mRNA-abundance profiles and neuropathy disease genes illustrates the utility of this resource. Notably, the periaxin-deficient mouse model of the neuropathy Charcot-Marie-Tooth 4F displays a highly pathological myelin proteome profile, exemplified by the discovery of reduced levels of the monocarboxylate transporter MCT1/SLC16A1 as a novel facet of the neuropathology. This work provides the most comprehensive proteome resource thus far to approach development, function and pathology of peripheral myelin, and a straightforward, accurate and sensitive workflow to address myelin diversity in health and disease.


Assuntos
Proteínas de Membrana/metabolismo , Miopatias Mitocondriais/metabolismo , Proteínas da Mielina/metabolismo , Bainha de Mielina/metabolismo , Nervos Periféricos/patologia , Retinite Pigmentosa/metabolismo , Animais , Doenças Desmielinizantes/patologia , Regulação da Expressão Gênica , Genótipo , Proteínas de Membrana/genética , Camundongos , Proteínas da Mielina/genética , Bainha de Mielina/química , Proteoma , Transcriptoma
12.
Development ; 146(21)2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31719044

RESUMO

During the development of the peripheral nervous system, axons and myelinating Schwann cells form a unique symbiotic unit, which is realized by a finely tuned network of molecular signals and reciprocal interactions. The importance of this complex interplay becomes evident after injury or in diseases in which aspects of axo-glial interaction are perturbed. This Review focuses on the specific interdependence of axons and Schwann cells in peripheral nerve development that enables axonal outgrowth, Schwann cell lineage progression, radial sorting and, finally, formation and maintenance of the myelin sheath.


Assuntos
Axônios/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Bainha de Mielina/fisiologia , Neuroglia/fisiologia , Nervos Periféricos/embriologia , Células de Schwann/fisiologia , Animais , Diferenciação Celular , Linhagem da Célula , Separação Celular , Camundongos , Regeneração Nervosa , Nervos Periféricos/fisiologia , Sistema Nervoso Periférico , Ratos , Transdução de Sinais
13.
J Neurosci ; 39(28): 5606-5626, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31085610

RESUMO

Myelination of axons facilitates the rapid propagation of electrical signals and the long-term integrity of axons. The ubiquitin-proteasome system is essential for proper protein homeostasis, which is particularly crucial for interactions of postmitotic cells. In our study, we examined how the E3 ubiquitin ligase FBXO7-SCF (SKP1, Cul1, F-box protein) expressed in myelinating cells affects the axon-myelin unit. Deletion of Fbxo7 in oligodendrocytes and Schwann cells in mice using the Cnp1-Cre driver line led to motor impairment due to hindlimb paresis. It did not result in apoptosis of myelinating cells, nor did it affect the proper myelination of axons or lead to demyelination. It however triggered axonal degeneration in the CNS and resulted in the severe degeneration of axons in the PNS, inducing a full-blown neuropathy. Both the CNS and PNS displayed inflammation, while the PNS was also characterized by fibrosis, massive infiltration of macrophages, and edema. Tamoxifen-induced deletion of Fbxo7, after myelination using the Plp1-CreERT2 line, led to a small number of degenerated axons and hence a very mild peripheral neuropathy. Interestingly, loss of Fbxo7 also resulted in reduced proteasome activity in Schwann cells but not in cerebellar granule neurons, indicating a specific sensitivity of the former cell type. Together, our results demonstrate an essential role for FBXO7 in myelinating cells to support associated axons, which is fundamental to the proper developmental establishment and the long-term integrity of the axon-myelin unit.SIGNIFICANCE STATEMENT The myelination of axons facilitates the fast propagation of electrical signals and the trophic support of the myelin-axon unit. Here, we report that deletion of Fbxo7 in myelinating cells in mice triggered motor impairment but had no effect on myelin biogenesis. Loss of Fbxo7 in myelinating glia, however, led to axonal degeneration in the CNS and peripheral neuropathy of the axonal type. In addition, we found that Schwann cells were particularly sensitive to Fbxo7 deficiency reflected by reduced proteasome activity. Based on these findings, we conclude that Fbxo7 is essential for the support of the axon-myelin unit and long-term axonal health.


Assuntos
Axônios/metabolismo , Proteínas F-Box/genética , Bainha de Mielina/metabolismo , Doenças do Sistema Nervoso Periférico/metabolismo , Animais , Apoptose , Axônios/patologia , Células Cultivadas , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Proteínas F-Box/metabolismo , Feminino , Deleção de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina/patologia , Doenças do Sistema Nervoso Periférico/genética , Doenças do Sistema Nervoso Periférico/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo
14.
Nat Commun ; 10(1): 1467, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30931926

RESUMO

In contrast to acute peripheral nerve injury, the molecular response of Schwann cells in chronic neuropathies remains poorly understood. Onion bulb structures are a pathological hallmark of demyelinating neuropathies, but the nature of these formations is unknown. Here, we show that Schwann cells induce the expression of Neuregulin-1 type I (NRG1-I), a paracrine growth factor, in various chronic demyelinating diseases. Genetic disruption of Schwann cell-derived NRG1 signalling in a mouse model of Charcot-Marie-Tooth Disease 1A (CMT1A), suppresses hypermyelination and the formation of onion bulbs. Transgenic overexpression of NRG1-I in Schwann cells on a wildtype background is sufficient to mediate an interaction between Schwann cells via an ErbB2 receptor-MEK/ERK signaling axis, which causes onion bulb formations and results in a peripheral neuropathy reminiscent of CMT1A. We suggest that diseased Schwann cells mount a regeneration program that is beneficial in acute nerve injury, but that overstimulation of Schwann cells in chronic neuropathies is detrimental.


Assuntos
Doenças Desmielinizantes/genética , Neuregulina-1/genética , Comunicação Parácrina , Células de Schwann/metabolismo , Nervo Sural/metabolismo , Animais , Animais Geneticamente Modificados , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Doença de Charcot-Marie-Tooth/patologia , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Diabetes Mellitus Tipo 1/complicações , Neuropatias Diabéticas/etiologia , Neuropatias Diabéticas/genética , Neuropatias Diabéticas/metabolismo , Neuropatias Diabéticas/patologia , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica , Atividade Motora , Proteínas da Mielina/genética , Neuregulina-1/metabolismo , Neurite Autoimune Experimental/genética , Neurite Autoimune Experimental/metabolismo , Neurite Autoimune Experimental/patologia , Neuroglia/metabolismo , Ratos , Receptor ErbB-2/metabolismo , Células de Schwann/ultraestrutura , Nervo Isquiático/lesões , Transdução de Sinais , Nervo Sural/ultraestrutura , Nervo Tibial
15.
Nat Commun ; 10(1): 1840, 2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30992451

RESUMO

Michael W. Sereda was incorrectly associated with the Department of Cellular Neurophysiology, Hanover Medical School, Carl-Neuberg-Str. 1, 30625 Hanover, Germany. The correct affiliations for Michael W. Sereda are Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany and Department of Clinical Neurophysiology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany.

16.
J Neurol Neurosurg Psychiatry ; 88(11): 941-952, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28860329

RESUMO

BACKGROUND: Charcot-Marie-Tooth disease type 1A (CMT1A) is the most common inherited neuropathy, a debilitating disease without known cure. Among patients with CMT1A, disease manifestation, progression and severity are strikingly variable, which poses major challenges for the development of new therapies. Hence, there is a strong need for sensitive outcome measures such as disease and progression biomarkers, which would add powerful tools to monitor therapeutic effects in CMT1A. METHODS: We established a pan-European and American consortium comprising nine clinical centres including 311 patients with CMT1A in total. From all patients, the CMT neuropathy score and secondary outcome measures were obtained and a skin biopsy collected. In order to assess and validate disease severity and progression biomarkers, we performed qPCR on a set of 16 animal model-derived potential biomarkers in skin biopsy mRNA extracts. RESULTS: In 266 patients with CMT1A, a cluster of eight cutaneous transcripts differentiates disease severity with a sensitivity and specificity of 90% and 76.1%, respectively. In an additional cohort of 45 patients with CMT1A, from whom a second skin biopsy was taken after 2-3 years, the cutaneous mRNA expression of GSTT2, CTSA, PPARG, CDA, ENPP1 and NRG1-Iis changing over time and correlates with disease progression. CONCLUSIONS: In summary, we provide evidence that cutaneous transcripts in patients with CMT1A serve as disease severity and progression biomarkers and, if implemented into clinical trials, they could markedly accelerate the development of a therapy for CMT1A.


Assuntos
Doença de Charcot-Marie-Tooth/terapia , Progressão da Doença , Marcadores Genéticos/genética , Pele/patologia , Resultado do Tratamento , Adulto , Idoso , Biópsia , Catepsina A/genética , Doença de Charcot-Marie-Tooth/sangue , Doença de Charcot-Marie-Tooth/genética , Feminino , Glutationa Transferase/genética , Glicoproteínas/genética , Humanos , Masculino , Pessoa de Meia-Idade , Neuregulina-1/genética , Proteínas Nucleares , PPAR gama/genética , Diester Fosfórico Hidrolases/genética , Prognóstico , Pirofosfatases/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Transcrição Gênica/genética
17.
Glia ; 64(1): 155-74, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26393339

RESUMO

Protein zero (P0) is the major structural component of peripheral myelin. Lack of this adhesion protein from Schwann cells causes a severe dysmyelinating neuropathy with secondary axonal degeneration in humans with the neuropathy Dejerine-Sottas syndrome (DSS) and in the corresponding mouse model (P0(null)-mice). In the mammalian CNS, the tetraspan-membrane protein PLP is the major structural myelin constituent and required for the long-term preservation of myelinated axons, which fails in hereditary spastic paraplegia (SPG type-2) and the relevant mouse model (Plp(null)-mice). The Plp-gene is also expressed in Schwann cells but PLP is of very low abundance in normal peripheral myelin; its function has thus remained enigmatic. Here we show that the abundance of PLP but not of other tetraspan myelin proteins is strongly increased in compact peripheral myelin of P0(null)-mice. To determine the functional relevance of PLP expression in the absence of P0, we generated P0(null)*Plp(null)-double-mutant mice. Compared with either single-mutant, P0(null)*Plp(null)-mice display impaired nerve conduction, reduced motor functions, and premature death. At the morphological level, axonal segments were frequently non-myelinated but in a one-to-one relationship with a hypertrophic Schwann cell. Importantly, axonal numbers were reduced in the vital phrenic nerve of P0(null)*Plp(null)-mice. In the absence of P0, thus, PLP also contributes to myelination by Schwann cells and to the preservation of peripheral axons. These data provide a link between the Schwann cell-dependent support of peripheral axons and the oligodendrocyte-dependent support of central axons.


Assuntos
Axônios/metabolismo , Proteína P0 da Mielina/metabolismo , Proteína Proteolipídica de Mielina/metabolismo , Nervo Frênico/metabolismo , Nervo Isquiático/metabolismo , Animais , Axônios/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Feminino , Estimativa de Kaplan-Meier , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mortalidade Prematura , Atividade Motora/fisiologia , Proteína P0 da Mielina/genética , Proteína Proteolipídica de Mielina/genética , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Glicoproteína Associada a Mielina/metabolismo , Condução Nervosa/fisiologia , Nervo Óptico/metabolismo , Nervo Óptico/patologia , Nervo Frênico/patologia , Nervo Isquiático/patologia
18.
Nat Med ; 20(9): 1055-61, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25150498

RESUMO

Duplication of the gene encoding the peripheral myelin protein of 22 kDa (PMP22) underlies the most common inherited neuropathy, Charcot-Marie-Tooth 1A (CMT1A), a disease without a known cure. Although demyelination represents a characteristic feature, the clinical phenotype of CMT1A is determined by the degree of axonal loss, and patients suffer from progressive muscle weakness and impaired sensation. CMT1A disease manifests within the first two decades of life, and walking disabilities, foot deformities and electrophysiological abnormalities are already present in childhood. Here, we show in Pmp22-transgenic rodent models of CMT1A that Schwann cells acquire a persistent differentiation defect during early postnatal development, caused by imbalanced activity of the PI3K-Akt and the Mek-Erk signaling pathways. We demonstrate that enhanced PI3K-Akt signaling by axonally overexpressed neuregulin-1 (NRG1) type I drives diseased Schwann cells toward differentiation and preserves peripheral nerve axons. Notably, in a preclinical experimental therapy using a CMT1A rat model, when treatment is restricted to early postnatal development, soluble NRG1 effectively overcomes impaired peripheral nerve development and restores axon survival into adulthood. Our findings suggest a model in which Schwann cell differentiation within a limited time window is crucial for the long-term maintenance of axonal support.


Assuntos
Doença de Charcot-Marie-Tooth/fisiopatologia , Modelos Animais de Doenças , Neuregulina-1/fisiologia , Animais , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Transgênicos
19.
Am J Hum Genet ; 94(4): 533-46, 2014 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-24680886

RESUMO

Pelizaeus-Merzbacher disease (PMD) is a severe hypomyelinating disease, characterized by ataxia, intellectual disability, epilepsy, and premature death. In the majority of cases, PMD is caused by duplication of PLP1 that is expressed in myelinating oligodendrocytes. Despite detailed knowledge of PLP1, there is presently no curative therapy for PMD. We used a Plp1 transgenic PMD mouse model to test the therapeutic effect of Lonaprisan, an antagonist of the nuclear progesterone receptor, in lowering Plp1 mRNA overexpression. We applied placebo-controlled Lonaprisan therapy to PMD mice for 10 weeks and performed the grid slip analysis to assess the clinical phenotype. Additionally, mRNA expression and protein accumulation as well as histological analysis of the central nervous system were performed. Although Plp1 mRNA levels are increased 1.8-fold in PMD mice compared to wild-type controls, daily Lonaprisan treatment reduced overexpression at the RNA level to about 1.5-fold, which was sufficient to significantly improve the poor motor phenotype. Electron microscopy confirmed a 25% increase in the number of myelinated axons in the corticospinal tract when compared to untreated PMD mice. Microarray analysis revealed the upregulation of proapoptotic genes in PMD mice that could be partially rescued by Lonaprisan treatment, which also reduced microgliosis, astrogliosis, and lymphocyte infiltration.


Assuntos
Estrenos/uso terapêutico , Antagonistas de Hormônios/uso terapêutico , Doença de Pelizaeus-Merzbacher/tratamento farmacológico , Progesterona/antagonistas & inibidores , Animais , Modelos Animais de Doenças , Estrenos/farmacocinética , Estrenos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Antagonistas de Hormônios/farmacocinética , Antagonistas de Hormônios/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína Proteolipídica de Mielina/genética , Fenótipo , RNA Mensageiro/genética
20.
Nat Neurosci ; 16(1): 48-54, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23222914

RESUMO

After peripheral nerve injury, axons regenerate and become remyelinated by resident Schwann cells. However, myelin repair never results in the original myelin thickness, suggesting insufficient stimulation by neuronal growth factors. Upon testing this hypothesis, we found that axonal neuregulin-1 (NRG1) type III and, unexpectedly, also NRG1 type I restored normal myelination when overexpressed in transgenic mice. This led to the observation that Wallerian degeneration induced de novo NRG1 type I expression in Schwann cells themselves. Mutant mice lacking a functional Nrg1 gene in Schwann cells are fully myelinated but exhibit impaired remyelination in adult life. We suggest a model in which loss of axonal contact triggers denervated Schwann cells to transiently express NRG1 as an autocrine/paracrine signal that promotes Schwann cell differentiation and remyelination.


Assuntos
Doenças Desmielinizantes/metabolismo , Neuregulina-1/metabolismo , Recuperação de Função Fisiológica/genética , Células de Schwann/metabolismo , Neuropatia Ciática/patologia , Animais , Animais Recém-Nascidos , Axônios/efeitos dos fármacos , Axônios/patologia , Axônios/ultraestrutura , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Doenças Desmielinizantes/etiologia , Modelos Animais de Doenças , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Estimulação Elétrica , Inibidores Enzimáticos/farmacologia , Potencial Evocado Motor/efeitos dos fármacos , Potencial Evocado Motor/fisiologia , Gânglios Espinais/citologia , Regulação da Expressão Gênica/genética , Proteínas Hedgehog/genética , Antígeno Ki-67/metabolismo , Locomoção/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Proteína Básica da Mielina/metabolismo , Proteína P0 da Mielina/metabolismo , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Neuregulina-1/genética , Neurônios/química , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fator 6 de Transcrição de Octâmero/metabolismo , RNA Mensageiro/metabolismo , Ratos , Recuperação de Função Fisiológica/efeitos dos fármacos , Proteínas S100/metabolismo , Células de Schwann/efeitos dos fármacos , Células de Schwann/ultraestrutura , Nervo Isquiático/citologia , Neuropatia Ciática/fisiopatologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Estatísticas não Paramétricas , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA